Block Based Compressive Sensing for GPR Images by Using Noiselet and Haar Wavelet

نویسنده

  • Mansour Nejati Jahromi
چکیده

ompressive sensing (CS) is a new method for image sampling in contrast with well-known Nyquist sampling theorem. In addition to the sampling and sparse domain which play an important role in perfect signal recovery on CS framework, the recovery algorithm which has been used also has effects on the reconstructed image. In this paper, the performance of four recovery algorithms are compared according to visual evaluation and image assessment parameters where noiselet and Gaussian used as the sampling domain and Fourier transform (FT), discrete Cosine transform (DCT) and Haar wavelet transform (WT) used as the sparse domain. Furthermore, the same sampling and sparse domains are also used for ground penetrating radar (GPR) raw data image. Due to the big size of GPR image and high computational expenses, the block-based adaptive sampling based on edge detection is used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

[hal-00453288, v1] On the incoherence of noiselet and Haar bases

Noiselets are a family of functions completely uncompressible using Haar wavelet analysis. The resultant perfect incoherence to the Haar transform, coupled with the existence of a fast transform has resulted in their interest and use as a sampling basis in compressive sampling. We derive a recursive construction of noiselet matrices and give a short matrix-based proof of the incoherence.

متن کامل

On the incoherence of noiselet and Haar bases

Noiselets are a family of functions completely uncompressible using Haar wavelet analysis. The resultant perfect incoherence to the Haar transform, coupled with the existence of a fast transform has resulted in their interest and use as a sampling basis in compressive sampling. We derive a recursive construction of noiselet matrices and give a short matrix-based proof of the incoherence.

متن کامل

Compressed Sensing Based Computed Tomography Image Reconstruction

In computed tomography (CT), an important objective is to reduce radiation dose without degrading image quality. The radiation exposure from CT scan will make severe problem in humans. This has high risk in the case of children and female. The higher exposure will lead to leukemia, cancer etc. So that low dose CT image reconstruction is the main concern now days. We have to reconstruct the imag...

متن کامل

Efficient adaptation of complex-valued noiselet sensing matrices for compressed single-pixel imaging

Minimal mutual coherence of discrete noiselets and Haar wavelets makes this pair of bases an essential choice for the measurement and compression matrices in compressed-sensing-based single-pixel detectors. In this paper, we propose an efficient way of using complex-valued and nonbinary noiselet functions for object sampling in single-pixel cameras with binary spatial light modulators and incoh...

متن کامل

Multichannel Compressive Sensing MRI Using Noiselet Encoding

The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017